Barnes-Jewish Hospital | Washington University Physicians
breakthroughs from the lab


Originally published Aug 2021

In the right image, amyloid deposits, shown in blue, were reduced after treatment with an antibody that targets the protein APOE. In the left image, amyloid deposits were treated with a placebo antibody. Photos by Monica Ziong

As people age, a normal brain protein known as amyloid beta often starts to collect into harmful amyloid plaques in the brain. Such plaques can be the first step on the path to Alzheimer’s dementia. When they form around blood vessels in the brain, a condition known as cerebral amyloid angiopathy, the plaques also raise the risk of strokes.

Several antibodies that target amyloid plaques have been studied as experimental treatments for Alzheimer’s disease. Such antibodies also may have the potential to treat cerebral amyloid angiopathy, although they haven’t yet been evaluated in clinical trials. But all of the anti-amyloid antibodies that have successfully reduced amyloid plaques in Alzheimer’s clinical trials also can cause a worrisome side effect: an increased risk of brain swelling and bleeds.

Recently, researchers at Washington University School of Medicine have identified an antibody that, in mice, removes amyloid plaques from brain tissue and blood vessels without increasing risk of brain bleeds. The antibody targets a minor component of amyloid plaques known as apolipoprotein E (APOE). The research points to a potentially safer approach to removing harmful amyloid plaques as a way of treating Alzheimer’s disease and cerebral amyloid angiopathy.


David Holtzman, MD, neurologist

“Alzheimer’s researchers have been searching for decades for therapies that reduce amyloid in the brain, and now that we have some promising candidates, we find that there’s this complication,” says the study’s senior author David Holtzman, MD, Washington University neurologist at Barnes-Jewish Hospital and head of the Department of Neurology. “Each of the antibodies that removes amyloid plaques in clinical trials is a little different, but they all have this problem, to a greater or lesser degree. We’ve taken a different approach by targeting APOE, and it seems to be effective at removing amyloid from both the brain tissue and the blood vessels, while avoiding this potentially dangerous side effect.”

The side effect, called ARIA, for amyloid-related imaging abnormalities, is visible on brain scans and can lead to headaches, confusion and even seizures. In clinical trials for anti-amyloid antibodies, roughly 20% of participants develop ARIA, although not all experience symptoms.

Anti-amyloid antibodies work by alerting the immune system to the presence of amyloid plaques and directing a cleanup crew called microglia to clear out such debris. ARIA seems to be the result of an overenthusiastic inflammatory response. Holtzman and Monica Xiong, a graduate student and the study’s first author, suspected that an antibody that targets only a minor part of the amyloid plaque might elicit a more restrained response that clears the plaques from both brain tissue and blood vessels without causing ARIA.

Fortunately, they had one such antibody on hand: HAE-4, which targets a specific form of human APOE and triggers the removal of plaques from brain tissue. To determine whether HAE-4 also removes amyloid from brain blood vessels, the researchers used mice genetically modified with human genes for amyloid and APOE4, a form of APOE associated with a high risk of developing Alzheimer’s and cerebral amyloid angiopathy. Such mice develop abundant amyloid plaques in brain tissue and brain blood vessels by the time they are about six months old.

The research team conducted experiments showing that eight weeks of treating mice with HAE-4 reduced amyloid plaques in brain tissue and brain blood vessels. Treatment also significantly improved the vessels’ ability to dilate and constrict on demand, an important sign of vascular health.

Amyloid plaques in the brain are dangerous because they can lead to blockages or ruptures that cause strokes. The researchers compared the number of brain bleeds in mice treated for eight weeks with either HAE-4 or an anti-amyloid antibody called aducanumab. Aducanumab significantly increased the number of bleeds, while HAE-4 did not.

“Some people get cerebral amyloid angiopathy and never get Alzheimer’s dementia, but they may have strokes instead,” Holtzman says. “A buildup of amyloid in brain blood vessels can be managed by controlling blood pressure and other things, but there isn’t a specific treatment for it. This study is exciting because it not only shows that we can treat the condition in an animal model, but we may be able to do it without the side effects that undermine the effectiveness of other anti-amyloid therapeutics.”

Originally published by Washington University School of Medicine at

What is Trending: